Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Soc Mass Spectrom ; 35(3): 487-497, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329320

RESUMO

Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.


Assuntos
Peptídeo Hidrolases , Espectrometria de Massas em Tandem , Humanos , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Colagenases , Biomarcadores
2.
J Proteome Res ; 23(4): 1131-1143, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417823

RESUMO

Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or the tumor microenvironment. Exploring the potential variations in the spatial co-occurrence or colocalization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process and functional analysis of variance. Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered due to data-collection complexities. We demonstrate the superior statistical power and robustness of the method in comparison with existing approaches through realistic simulation studies. Furthermore, we apply the method to three real data sets on different diseases collected using different imaging platforms. In particular, one of these data sets reveals novel insights into the spatial characteristics of various types of colorectal adenoma.


Assuntos
Simulação por Computador , Análise de Variância
3.
J Proteome Res ; 23(2): 786-796, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38206822

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.


Assuntos
Dieta Ocidental , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Polissacarídeos/química , Glicosilação
4.
Sci Rep ; 14(1): 489, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177192

RESUMO

N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.


Assuntos
Processamento de Proteína Pós-Traducional , Sarcoma , Masculino , Feminino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicosilação , Polissacarídeos/metabolismo
5.
J Am Soc Mass Spectrom ; 34(11): 2481-2490, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779241

RESUMO

N-linked glycans are complex biomolecules vital to cellular functions that have been linked to a wide range of pathological conditions. Mass spectrometry imaging (MSI) has been used to study the localization of N-linked glycans in cells and tissues. However, their structural diversity presents a challenge for MSI techniques, which stimulates the development of new approaches. In this study, we demonstrate for the first time spatial mapping of N-linked glycans in biological tissues using nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI). Nano-DESI MSI is an ambient ionization technique that has been previously used for imaging of metabolites, lipids, and proteins in biological tissue samples without special sample pretreatment. N-linked glycans are released from glycoproteins using an established enzymatic digestion with peptide N-glycosidase F, and their spatial localization is examined using nano-DESI MSI. We demonstrate imaging of N-linked glycans in formalin-fixed paraffin-embedded human hepatocellular carcinoma and human prostate tissues in both positive and negative ionization modes. We examine the localization of 38 N-linked glycans consisting of high mannose, hybrid fucosylated, and sialyated glycans. We demonstrate that negative mode nano-DESI MSI is well-suited for imaging of underivatized sialylated N-linked glycans. On-tissue MS/MS of different adducts of N-linked glycans proves advantageous for elucidation of the glycan sequence. This study demonstrates the applicability of liquid extraction techniques for spatial mapping of N-linked glycans in biological samples, providing an additional tool for glycobiology research.


Assuntos
Neoplasias Hepáticas , Espectrometria de Massas por Ionização por Electrospray , Masculino , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem , Imagem Molecular/métodos , Polissacarídeos/análise
6.
Anal Bioanal Chem ; 415(28): 7011-7024, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843548

RESUMO

The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.


Assuntos
Anticorpos , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/análise , Peptídeos/análise , Colágeno , Lasers
7.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126482

RESUMO

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Ácidos Siálicos/química , Polissacarídeos/química , Linhagem Celular Tumoral
8.
Front Pharmacol ; 14: 1337319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273829

RESUMO

Colorectal cancer (CRC) stands as a leading cause of death worldwide, often arising from specific genetic mutations, progressing from pre-cancerous adenomas to adenocarcinomas. Early detection through regular screening can result in a 90% 5-year survival rate for patients. However, unfortunately, only a fraction of CRC cases are identified at pre-invasive stages, allowing progression to occur silently over 10-15 years. The intricate interplay between the immune system and tumor cells within the tumor microenvironment plays a pivotal role in the progression of CRC. Immune cell clusters can either inhibit or facilitate tumor initiation, growth, and metastasis. To gain a better understanding of this relationship, we conducted N-glycomic profiling using matrix-assisted laser desorption-ionization mass spectrometry imaging (MALDI-MSI). We detected nearly 100 N-glycan species across all samples, revealing a shift in N-glycome profiles from normal to cancerous tissues, marked by a decrease in high mannose N-glycans. Further analysis of precancerous to invasive carcinomas showed an increase in pauci-mannose biantennary, and tetraantennary N-glycans with disease progression. Moreover, a distinct stratification in the N-glycome profile was observed between non-mucinous and mucinous CRC tissues, driven by pauci-mannose, high mannose, and bisecting N-glycans. Notably, we identified immune clusters of CD20+ B cells and CD3/CD44+ T cells distinctive and predictive with signature profiles of bisecting and branched N-glycans. These spatial N-glycan profiles offer potential biomarkers and therapeutic targets throughout the progression of CRC.

9.
Sci Rep ; 12(1): 20801, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460712

RESUMO

While mammograms are the standard tool for breast cancer screening, there remains challenges for mammography to effectively distinguish benign lesions from breast cancers, leading to many unnecessary biopsy procedures. A blood-based biomarker could provide a minimally invasive supplemental assay to increase the specificity of breast cancer screening. Serum N-glycosylation alterations have associations with many cancers and several of the clinical characteristics of breast cancer. The current study utilized a high-throughput mass spectrometry workflow to identify serum N-glycans with differences in intensities between patients that had a benign lesion from patients with breast cancer. The overall N-glycan profiles of the two patient groups had no differences, but there were several individual N-glycans with significant differences in intensities between patients with benign lesions and ductal carcinoma in situ (DCIS). Many N-glycans had strong associations with age and/or body mass index, but there were several of these associations that differed between the patients with benign lesions and breast cancer. Accordingly, the samples were stratified by the patient's age and body mass index, and N-glycans with significant differences between these subsets were identified. For women aged 50-74 with a body mass index of 18.5-24.9, a model including the intensities of two N-glycans, 1850.666 m/z and 2163.743 m/z, age, and BMI were able to clearly distinguish the breast cancer patients from the patients with benign lesions with an AUROC of 0.899 and an optimal cutoff with 82% sensitivity and 84% specificity. This study indicates that serum N-glycan profiling is a promising approach for providing clarity for breast cancer screening, especially within the subset of healthy weight women in the age group recommended for mammograms.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Índice de Massa Corporal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Mamografia , Polissacarídeos
10.
Diseases ; 10(4)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36278574

RESUMO

Background: A better understanding of neighborhood-level factors' contribution is needed in order to increase the precision of cancer control interventions that target geographic determinants of cancer health disparities. This study characterized the distribution of neighborhood deprivation in a racially diverse cohort of prostate cancer survivors. Methods: A retrospective cohort of 253 prostate cancer patients who were treated with radical prostatectomy from 2011 to 2019 was established at the Medical University of South Carolina. Individual-level data on clinical variables (e.g., stage, grade) and race were abstracted. Social Deprivation Index (SDI) and Healthcare Professional Shortage (HPS) status was obtained from the Robert Graham Center and assigned to participants based on their residential census tract. Data were analyzed with descriptive statistics and multivariable logistic regression. Results: The cohort of 253 men consisted of 168 white, 81 African American, 1 Hispanic and 3 multiracial men. Approximately 49% of 249 men lived in areas with high SDI (e.g., SDI score of 48 to 98). The mean for SDI was 44.5 (+27.4), and the range was 97 (1−98) for all study participants. African American men had a significantly greater likelihood of living in a socially deprived neighborhood compared to white men (OR = 3.7, 95% C.I. 2.1−6.7, p < 0.01), while men who lived in areas with higher HPS shortage status were significantly more likely to live in a neighborhood that had high SDI compared to men who lived in areas with lower HPS shortages (OR = 4.7, 95% C.I. = 2.1−10.7, p < 0.01). African Americans had a higher likelihood of developing biochemical reoccurrence (OR = 3.7, 95% C.I. = 1.7−8.0) compared with white men. There were no significant association between SDI and clinical characteristics of prostate cancer. Conclusions: This study demonstrates that SDI varies considerably by race among men with prostate cancer treated with radical prostatectomy. Using SDI to understand the social environment could be -particularly useful as part of precision medicine and precision public health approaches and could be used by cancer centers, public health providers, and other health care specialists to inform operational decisions about how to target health promotion and disease prevention efforts in catchment areas and patient populations.

11.
Front Oncol ; 12: 876651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832545

RESUMO

A primary difference between black women (BW) and white women (WW) diagnosed with breast cancer is aggressiveness of the tumor. Black women have higher mortalities with similar incidence of breast cancer compared to other race/ethnicities, and they are diagnosed at a younger age with more advanced tumors with double the rate of lethal, triple negative breast cancers. One hypothesis is that chronic social and economic stressors result in ancestry-dependent molecular responses that create a tumor permissive tissue microenvironment in normal breast tissue. Altered regulation of N-glycosylation of proteins, a glucose metabolism-linked post-translational modification attached to an asparagine (N) residue, has been associated with two strong independent risk factors for breast cancer: increased breast density and body mass index (BMI). Interestingly, high body mass index (BMI) levels have been reported to associate with increases of cancer-associated N-glycan signatures. In this study, we used matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to investigate molecular pattern changes of N-glycosylation in ancestry defined normal breast tissue from BW and WW with significant 5-year risk of breast cancer by Gail score. N-glycosylation was tested against social stressors including marital status, single, education, economic status (income), personal reproductive history, the risk factors BMI and age. Normal breast tissue microarrays from the Susan G. Komen tissue bank (BW=43; WW= 43) were used to evaluate glycosylation against socioeconomic stress and risk factors. One specific N-glycan (2158 m/z) appeared dependent on ancestry with high sensitivity and specificity (AUC 0.77, Brown/Wilson p-value<0.0001). Application of a linear regression model with ancestry as group variable and socioeconomic covariates as predictors identified a specific N-glycan signature associated with different socioeconomic stresses. For WW, household income was strongly associated to certain N-glycans, while for BW, marital status (married and single) was strongly associated with the same N-glycan signature. Current work focuses on understanding if combined N-glycan biosignatures can further help understand normal breast tissue at risk. This study lays the foundation for understanding the complexities linking socioeconomic stresses and molecular factors to their role in ancestry dependent breast cancer risk.

12.
J Proteome Res ; 21(8): 1930-1938, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35766466

RESUMO

Alterations to N-glycan expression are relevant to the progression of various diseases, particularly cancer. In many cases, specific N-glycan structural features such as sialylation, fucosylation, and branching are of specific interest. A novel MALDI imaging mass spectrometry workflow has been recently developed to analyze these features of N-glycosylation through the utilization of endoglycosidase enzymes to cleave N-glycans from associated glycoproteins. Enzymes that have previously been utilized to cleave N-glycans include peptide-N-glycosidase F (PNGase F) to target N-glycans indiscriminately and endoglycosidase F3 (Endo F3) to target core fucosylated N-glycans. In addition to these endoglycosidases, additional N-glycan cleaving enzymes could be used to target specific structural features. Sialidases, also termed neuraminidases, are a family of enzymes that remove terminal sialic acids from glycoconjugates. This work aims to utilize sialidase, in conjunction with PNGase F/Endo F3, to enzymatically remove sialic acids from N-glycans in an effort to increase sensitivity for nonsialylated N-glycan MALDI-IMS peaks. Improving detection of nonsialylated N-glycans allows for a more thorough analysis of specific structural features such as fucosylation or branching, particularly of low abundant structures. Sialidase utilization in MALDI-IMS dramatically increases sensitivity and increases on-tissue endoglycosidase efficiency, making it a very useful companion technique to specifically detect nonsialylated N-glycans.


Assuntos
Neuraminidase , Polissacarídeos , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Polissacarídeos/química , Ácidos Siálicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
Adv Cancer Res ; 154: 15-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35459468

RESUMO

Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.


Assuntos
Colágeno , Neoplasias , Microambiente Tumoral , Biomarcadores Tumorais , Proteínas da Matriz Extracelular , Humanos , Neoplasias/diagnóstico
14.
Adv Cancer Res ; 154: xiii-xiv, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35459474
15.
Mol Cell Proteomics ; 21(5): 100225, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331917

RESUMO

Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is characterized by inflammation, hepatocyte injury, and fibrosis. Further, NASH is a risk factor for cirrhosis and hepatocellular carcinoma. Previous research demonstrated that serum N-glycan profiles can be altered in NASH patients. Here, we hypothesized that these N-glycan modifications may be associated with specific liver damage in NAFLD and NASH. To investigate the N-glycome profile in tissue, imaging mass spectrometry was used for a qualitative and quantitative in situ N-linked glycan analysis of mouse and human NAFLD/NASH tissue. A murine model was used to induce NAFLD and NASH through ad libitum feeding with either a high-fat diet or a Western diet, respectively. Mice fed a high-fat diet or Western diet developed inflammation, steatosis, and fibrosis, consistent with NAFLD/NASH phenotypes. Induction of NAFLD/NASH for 18 months using high caloric diets resulted in increased expression of mannose, complex/fucosylated, and hybrid N-glycan structures compared to control mouse livers. To validate the animal results, liver biopsy specimens from 51 human NAFLD/NASH patients representing the full range of NASH Clinical Research Network fibrosis stages were analyzed. Importantly, the same glycan alterations observed in mouse models were observed in human NASH biopsies and correlated with the degree of fibrosis. In addition, spatial glycan alterations were localized specifically to histopathological changes in tissue like fibrotic and fatty areas. We demonstrate that the use of standard staining's combined with imaging mass spectrometry provide a full profile of the origin of N-glycan modifications within the tissue. These results indicate that the spatial distribution of abundances of released N-glycans correlate with regions of tissue steatosis associated with NAFLD/NASH.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Ocidental , Modelos Animais de Doenças , Glicosilação , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Espectrometria de Massas , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo
16.
Front Immunol ; 13: 797460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197973

RESUMO

Our group has recently developed the GlycoTyper assay which is a streamlined antibody capture slide array approach to directly profile N-glycans of captured serum glycoproteins including immunoglobulin G (IgG). This method needs only a few microliters of serum and utilizes a simplified processing protocol that requires no purification or sugar modifications prior to analysis. In this method, antibody captured glycoproteins are treated with peptide N-glycosidase F (PNGase F) to release N-glycans for detection by MALDI imaging mass spectrometry (IMS). As alterations in N-linked glycans have been reported for IgG from large patient cohorts with fibrosis and cirrhosis, we utilized this novel method to examine the glycosylation of total IgG, as well as IgG1, IgG2, IgG3 and IgG4, which have never been examined before, in a cohort of 106 patients with biopsy confirmed liver fibrosis. Patients were classified as either having no evidence of fibrosis (41 patients with no liver disease or stage 0 fibrosis), early stage fibrosis (10 METAVIR stage 1 and 18 METAVIR stage 2) or late stage fibrosis (6 patients with METAVIR stage 3 fibrosis and 37 patients with METAVIR stage 4 fibrosis (cirrhosis)). Several major alterations in glycosylation were observed that classify patients as having no fibrosis (sensitivity of 92% and a specificity of 90%), early fibrosis (sensitivity of 84% with 90% specificity) or significant fibrosis (sensitivity of 94% with 90% specificity).


Assuntos
Imunoglobulina G/imunologia , Biomarcadores , Feminino , Glicoproteínas/metabolismo , Glicosilação , Humanos , Cirrose Hepática , Masculino , Pessoa de Meia-Idade , Polissacarídeos/sangue , Projetos de Pesquisa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
17.
J Proteome Res ; 21(1): 243-249, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34860526

RESUMO

N-Linked glycans are structurally diverse polysaccharides that represent significant biological relevance due to their involvement in disease progression and cancer. Due to their complex nature, N-linked glycans pose many analytical challenges requiring the continued development of analytical technologies. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a hybrid ionization technique commonly used for mass spectrometry imaging (MSI) applications. Previous work demonstrated IR-MALDESI to significantly preserve sialic acid containing N-linked glycans that otherwise require chemical derivatization prior to detection. Here, we demonstrate the first analysis of N-linked glycans in situ by IR-MALDESI MSI. A formalin-fixed paraffin-embedded human prostate tissue was analyzed in negative ionization mode after tissue washing, antigen retrieval, and pneumatic application of PNGase F for enzymatic digestion of N-linked glycans. Fifty-three N-linked glycans were confidently identified in the prostate sample where more than 60% contained sialic acid residues. This work demonstrates the first steps in N-linked glycan imaging of biological tissues by IR-MALDESI MSI. Raw data files are available in MassIVE (identifier: MSV000088414).


Assuntos
Próstata , Espectrometria de Massas por Ionização por Electrospray , Formaldeído/química , Humanos , Lasers , Masculino , Inclusão em Parafina , Polissacarídeos/química , Próstata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
18.
Cancers (Basel) ; 13(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503228

RESUMO

Breast stroma plays a significant role in breast cancer risk and progression yet remains poorly understood. In breast stroma, collagen is the most abundantly expressed protein and its increased deposition and alignment contributes to progression and poor prognosis. Collagen post-translation modifications such as hydroxylated-proline (HYP) control deposition and stromal organization. The clinical relevance of collagen HYP site modifications in cancer processes remains undefined due to technical issues accessing collagen from formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a targeted approach for investigating collagen and other extracellular matrix proteins from FFPE tissue. Here, we hypothesized that immunohistochemistry staining for fibroblastic markers would not interfere with targeted detection of collagen stroma peptides and could reveal peptide regulation influenced by specific cell types. Our initial work demonstrated that stromal peptide peak intensities when using MALD-IMS following IHC staining (αSMA, FAP, P4HA3 and PTEN) were comparable to serial sections of nonstained tissue. Analysis of histology-directed IMS using PTEN on breast tissues and TMAs revealed heterogeneous PTEN staining patterns and suggestive roles in stromal protein regulation. This study sets the foundation for investigations of target cell types and their unique contribution to collagen regulation within extracellular matrix niches.

19.
Methods Mol Biol ; 2350: 313-329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331294

RESUMO

We describe a multiplexed imaging mass spectrometry approach especially suitable for fibrosis research. Fibrosis is a process characterized by excessive extracellular matrix (ECM) secretion. Buildup of ECM impairs tissue and organ function to promote further progression of disease. It is an ongoing analytical challenge to access ECM for diagnosis and therapeutic treatment of fibrosis. Recently, we reported the use of the enzyme collagenase type III to target the ECM proteome in thin histological tissue sections of fibrotic diseases including hepatocellular carcinoma, breast cancer, prostate cancer, lung cancer and aortic valve stenosis. Detection of collagenase type III peptides by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) allows localization of ECM peptide sequences to specific regions of fibrosis. We have further identified that the ECM proteome accessed by collagenase type III has on average 3.7 sites per protein that may be differentially N-glycosylated. N-glycosylation is a major posttranslational modification of the ECM proteome, influencing protein folding, secretion, and organization. Understanding both N-glycosylation signaling and regulation of ECM expression significantly informs on ECM signaling in fibrosis.


Assuntos
Biomarcadores , Matriz Extracelular/metabolismo , Histocitoquímica/métodos , Espectrometria de Massas/métodos , Polissacarídeos/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Glicosilação , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Pesquisa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluxo de Trabalho
20.
Clin Lab Med ; 41(2): 247-266, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020762

RESUMO

N-glycan imaging mass spectrometry (IMS) can rapidly and reproducibly identify changes in disease-associated N-linked glycosylation that are linked with histopathology features in standard formalin-fixed paraffin-embedded tissue samples. It can detect multiple N-glycans simultaneously and has been used to identify specific N-glycans and carbohydrate structural motifs as possible cancer biomarkers. Recent advancements in instrumentation and sample preparation are also discussed. The tissue N-glycan IMS workflow has been adapted to new glass slide-based assays for effective and rapid analysis of clinical biofluids, cultured cells, and immunoarray-captured glycoproteins for detection of changes in glycosylation associated with disease.


Assuntos
Diagnóstico por Imagem , Polissacarídeos , Biomarcadores Tumorais , Glicosilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA